Post

Latex Test

$\LaTeX$ Rendering Test:

Raw LaTeX:

1
$2x+2=5$

Rendered:

$2x+2=5$


Raw LaTeX:

1
$L_1=3x^2+2x+1$

Rendered:

$L_1=3x^2+2x+1$


Raw LaTeX:

1
2
3
4
\begin{bmatrix}
   a & b \\
   c & d
\end{bmatrix}

Rendered:

\[\begin{bmatrix} a & b \\ c & d \end{bmatrix}\]

Raw LaTeX:

1
2
3
4
5
6
7
8
9
10
$$
\begin{align*}
y = y(x,t) &= A e^{i\theta} \\
&= A (\cos \theta + i \sin \theta) \\
&= A (\cos(kx - \omega t) + i \sin(kx - \omega t)) \\
&= A\cos(kx - \omega t) + i A\sin(kx - \omega t)  \\
&= A\cos \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) + i A\sin \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big)  \\
&= A\cos \frac{2\pi}{\lambda} (x - v t) + i A\sin \frac{2\pi}{\lambda} (x - v t)
\end{align*}
$$

Rendered:

\[\begin{align*} y = y(x,t) &= A e^{i\theta} \\ &= A (\cos \theta + i \sin \theta) \\ &= A (\cos(kx - \omega t) + i \sin(kx - \omega t)) \\ &= A\cos(kx - \omega t) + i A\sin(kx - \omega t) \\ &= A\cos \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) + i A\sin \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) \\ &= A\cos \frac{2\pi}{\lambda} (x - v t) + i A\sin \frac{2\pi}{\lambda} (x - v t) \end{align*}\]
This post is licensed under CC BY 4.0 by the author.